Curtiss-Wright Jet Engine Trouble Shooting for Optimum

This original antique vintage manual is full of pictures, diagrams and charts. A few extra loose leaf relability charts were found in the book from 1953. This book is in good condition.

The incredible growth of commercial aviation in the decade following World War II again placed tremendous demand on Curtiss-Wright's capability to provide reliable reciprocating engines and propellers. Curtiss-Wright engines powered the mainstays of commercial aviation in the fifties; planes like the Douglas DC-7 and Lockheed Super Constellation. Military demands for jet engines took Curtiss-Wright into that field and the J-65 engine enjoyed a long production run. In the early and mid fifties, Curtiss-Wright combined the wisdom gained from airplane design with the new science of electronics and pioneered the development of flight simulators for military and commercial aircraft. Sooner than anyone could have predicted, commercial aviation pushed into the jet age. Public enthusiasm for the speed and comfort of such planes as the Boeing 707 and Douglas DC-8 began to ring down the curtain on the reciprocating engine and the propeller. With this change in technology, Curtiss-Wright accelerated its activities to become a more diversified company and reduce what had been its historical dependency on the aviation industry. We were involved early on in

Curtiss-Wright's transition from an overdependence on mature products such as reciprocating engines and propellers to the balanced multi-market, multinational structure in existence today truly began to accelerate in the 1960s. While Curtiss-Wright continued to support military and commercial users of their reciprocating and jet engines, and propellers, with parts and overhaul services, a new management team began to push the technological capabilities of Curtiss-Wright into new and allied growth markets. While the Company became involved in a number of businesses during the coming years, it was during this decade that the cornerstones of what the Company is today were put into place. As the space program began to form, Curtiss-Wright was able to bring its skills in metalworking to bear on that new and growing area. The Company took on the role of major subcontractor, and developed the equipment and sophisticated methods for the mass production of precision-machined rocket motor cases and exhaust nozzles. Decades of expertise in precision design, engineering and machining in propellers and transmission systems were redirected to the engineering and production of mechanical, hydraulic and electro-mechanical control and actuation systems for aerospace and defense applications. This was the beginning of what is today our Motion Control business segment. With the acquisition of Target Rock Corporation in 1961, the Company laid the foundation of what is now our Flow Control business segment. With this addition, Curtiss-Wright moved into the highly specialized field of safety and relief valves for use in United States Navy nuclear propulsion systems on submarines and aircraft carriers. This market entry was broadened in 1967 when Target Rock Corporation received their first order for valves for a commercial nuclear power plant - an offshoot of their original military programs. The Company's Metal Treatment business segment began with an acquisition made in 1968 that took the corporation into the industrial service field. Metal Improvement Company, which provided shot-peening and shot-peen forming services to industrial and aerospace customers, had only three plants at the time of acquisition. Please Read terms before bidding!!!

Payment must be made within 7 business days of end of...

... read more